Magnetism in iron as a function of pressure
نویسندگان
چکیده
Magnetism in iron plays a central role in understanding the physical properties of its polymorphs, including the close-packed high pressure phases. We explore the rich and complex magnetic structures of these phases in two ways. We use a first-principles based, magnetic tight-binding total energy model to study non-collinear magnetic structures, and an all-electron method to study the collinear state in hcp iron that we predict in the hcp iron stability range. For the non-collinear study we compute the magnetization energy and moments for various non-collinear ordered spin configurations. For fcc iron we find non-collinear structures with a wavevector (0, 0, q) with q close to 0.5 to be energetically stable, in agreement with previous first-principles calculations. In the high pressure stability field of hcp iron we find a stable collinear antiferromagnetic structure (afmII), previously predicted with an allelectron method. We further investigate the afmII structure,computing physical properties from first principles that support the notion of antiferromagnetic correlations in hcp iron. We show that a recently observed anomalous splitting in Raman spectra of hcp iron under compression can be quantitatively explained by spin–phonon interactions. To address the absence of Mössbauer splitting in experiments on hcp iron we have also calculated the hyperfine field of afmII iron and find it to be so small that the predicted splitting would be smaller than the resolution limit of experiments.
منابع مشابه
Importance of Magnetism in Phase Stability, Equations of State, and Elasticity
— The effects of magnetism on high pressure properties of transition metals and transition metal compounds can be quite important. In the case of Fe, magnetism is responsible for stability of the body-centered cubic (bcc) phase at ambient conditions, and the large thermal expansivity in face-centered cubic (fcc) iron, and also has large effects on the equation of state and elasticity of hexagon...
متن کاملar X iv : c on d - m at / 0 11 00 25 v 5 2 4 Ju l 2 00 2 Importance of Magnetism in Phase Stability , Equations of State , and Elasticity
— The effects of magnetism on high pressure properties of transition metals and transition metal compounds can be quite important. In the case of Fe, magnetism is responsible for stability of the body-centered cubic (bcc) phase at ambient conditions, and the large thermal expansivity in face-centered cubic (fcc) iron, and also has large effects on the equation of state and elasticity of hexagon...
متن کاملEffect of doping and pressure on magnetism and lattice structure of Fe-based superconductors
Using first principles calculations, we analyze structural and magnetic trends as a function of charge doping and pressure in BaFe2As2, and compare to experimentally established facts. We find that density functional theory, while accurately reproducing the structural and magnetic ordering at ambient pressure, fails to reproduce some structural trends as pressure is increased. Most notably, the...
متن کاملHigh Pressure Magnetism
A study of the Mossbauer effect of Fe in magnetic materials subjected to high pressures is described. Specific systems reviewed are FeF2 , ct, s and -y phases of iron, invar, stainless steel and a metallic glass.
متن کاملLow Temperature Synthesis of α-Fe2O3 Nano-rods Using Simple Chemical Route
Iron oxide (Fe2O3) is widely used as a catalyst, pigment and gas sensitive material. In this article, α-Fe2O3 nano-rods were first synthesized via a simple chemical method using iron(III) nitrate 9- hydrate (Fe(NO3)3.9H2O) as precursor. XRD pattern showed that the iron oxide nanoparticles exhibited alpha-Fe2O3 (hematite) structure in nanocrystals. The single-phase α- Fe2O3 nano-rods were prepa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004